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Figure 1: Characterization of the double T-DNA insertion mutant siz1-2 kxk1-1 (siz1 hxk1). (A) Summarized information
regarding HXK1 T-DNA insertion mutants in the Arabidopsis thaliana Columbia-0 (Col-0) ecotype background, with updated
designations; KD and KO stand for knockdown and knockout, respectively. (B) Representation of the HXK1 gene displaying
exons (white boxes), introns (thin lines), and UTRs (grey boxes). The site and orientation of the T-DNA insertion (triangle
with insertion mutant line code) and location of primers used for genotyping are represented; scale bar indicates 100 base pairs
(bp). (C) Genotyping PCR, confirming the presence or absence of the T-DNA insertion for the hxk1-1 and siz1-2 mutant lines.
(D) Morphology of 1-month-old plants grown under long days. Scale bar indicates 1 cm. (E) Morphological measurement of
the maximum rosette radius for each genotype. Error bars represent SEM (n>5). (F) Seed germination percentages scored by
green cotyledon appearance 10 days after sowing onto MS media; error bars represent SEM (n>4). Asterisks represent
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statistically significant differences between genotypes (unpaired t test; NS, non-significant; *, P < 0.05; **, P < 0.01; *** P <
0.001).

Description

Carbohydrate metabolism needs to be tightly regulated in order to ensure an organism’s survival. For this reason, several
sensing mechanisms are in permanent alert to monitor and maintain homeostatic levels of sugars (Li and Sheen, 2016). For
instance, glucose cellular levels can be sensed by different signaling proteins, including the Hexokinase 1 (HXK1), a
moonlighting protein with both metabolic (glucose phosphorylation) and sensing/transduction functions (Moore et al., 2003).
In a situation of excess glucose, HXK1 forms a nuclear complex that directly inhibits photosynthesis-related genes, reducing
the synthesis of more glucose (Cho et al., 2006). Interestingly, HXK1 loss-of-function mutants lose the capacity to sense
external sugar and, consequently, are capable of germinating in high percentages of external sugar supplementation. Indeed,
the reference HXK1 mutant gin2-1, that harbors a nonsense mutation (Q432*) in Arabidopsis thaliana ecotype Landsberg
erecta (Ler), was obtained from a forward screening for glucose insensitive (gin) mutants that do not suffer post-germinative
growth arrest (PGGA) on a 6% glucose MS medium (Moore et al., 2003). Broadly, a myriad of phenotypic defects have been
described for HXK1 mutants, highlighting the protein’s importance in the regulation of plant development (Aguilera-Alvarado
and Sanchez-Nieto, 2017; Van Dingenen et al., 2019). Considering HXK1’s importance to plant fitness and development, one
expects its activity to be tightly controlled.

During a previous study (Castro et al., 2015), we aimed to link carbohydrate signaling with the post-translational modification
by the small peptide Small Ubiquitin-like Modifier (SUMO). SUMO conjugation is a reversible and rapid modification that
can regulate the activity, localization and stability of target proteins (Castro et al., 2012). The covalent attachment of SUMO to
a target (i.e. sumoylation), is mediated by an enzymatic cascade that sequentially involves DSP proteases (for SUMO
maturation), E1 activating enzymes, E2 conjugating enzymes, and E3 ligases (Castro et al., 2012; Castro et al., 2018a). SIZ1 is
an E3 ligase that is critical to enhance SUMO conjugation, especially in response to environmental stressors. Accordantly,
SIZ1 loss-of-function mutants are not only developmentally compromised, but also hypersensitive to several environmental
stress conditions (Castro et al., 2012).

Previously, we reported that the siz1 mutation results in sugar hypersensitivity in its osmotic stress component, and also in the
signaling effect of sugars leading up to PGGA (Castro et al., 2015; Castro et al., 2018b). Moreover, siz1 presents less glucose,
fructose, sucrose and starch, which is likely correlated with enhanced expression of sugar degradation genes (Park et al., 2012;
Tomanov et al., 2014; Castro et al., 2015). Interestingly, the glucose sensor transcript HXK1 and HXK-metabolic pathway
marker genes were differentially expressed in sizl, and for this reason, we aimed to test for the presence of epistatic
relationships between SIZ1 and HXK1. Consequently, we crossed siz1-2 with the previously used HXKI1 T-DNA insertion
mutant SALK_034233 (Reda, 2013; Huang et al., 2015; Reda, 2015), hereafter designated hxk1-1 (Fig. 1A,B). Since the siz1-
2 mutant is a SALK line in the Columbia-0 (Col-0) background, we also opted for a SALK mutant for HXK1, instead of the
well-characterized gin2-1 (in Ler background). During our inspection for Col-based insertion mutant lines present in the
literature, we came across conflicting mutant allele nomenclatures. As such, in Fig. 1A,B we try to summarize existing
knowledge, and suggest a novel nomenclature for several HXK1 insertion mutant lines for the community. In the F2
generation, hxk1-1 plants were genotyped using the primers displayed in Fig. 1B, resulting in the identification of the double
mutant siz1-2 hxk1-1 (siz1 hxk1) (Fig. 1C). The hxkI-1 mutant was smaller than the wild-type, similar to other hxkl alleles
(Reda, 2013; Huang et al., 2015; Reda, 2015; Van Dingenen et al., 2019). Most significantly, the double mutant siz1 hxk1
showed greater morphological defects than siz1-2 (Fig. 1D), which suggests that hxk1-1 might produce an additive effect to the
dwarfism displayed by the siz1-2 mutant (Fig. 1E). The germination also seems additively affected in the double mutant with
only a few seeds germinating and producing cotyledons (Fig. 1F). In comparison with other hxk1 alleles, hxk1-1 presents a
milder developmental defect (Aki et al., 2007; Huang et al., 2015; Van Dingenen et al., 2019). Since the hxki-1 T-DNA
insertion is in the 3’UTR (Fig. 1B) it is most likely a knockdown mutant allele. In support, Huang et al. (2015) showed a slight
decrease of HXK1 expression in the hxki1-1 line. Albeit these results suggest that hxk1-1 is not a complete loss-of-function
mutant, Reda (2013, 2015) stated that it lacks HXK1 expression (not shown by the author) and showed that this same mutant
line is compromised in hexokinase activity by ~45%. This HXK1 knockdown mutant may be useful for genetic strategies
where hxk mutants are introgressed into mutant backgrounds that are also severely pleiotropic, as is the current case of siz1.
Nevertheless, the epistatic relationship between HXK1 and SIZ1 should be further clarified using null alleles of HXK1.

Collectively, these results support that SIZ1 and HXK1 are likely to be involved in independent growth control pathways. This
also reinforces the idea that the HXK1-signaling pathway is unlikely to involve SIZ1 (Castro et al., 2015). However, the
possible involvement of SUMO in the control of HXK1 activity, especially its nuclear localization and regulation of gene
expression, cannot be discarded. This is supported by the presence of evolutionarily conserved sumoylation motifs in this
protein family (Castro et al., 2020). Moreover, HXK1 was detected in a yeast-two-hybrid screening for SUMO E2 conjugase
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enzyme (SCE) interacting partners, and was sumoylated in a heterologous bacterial system (Elrouby and Coupland, 2010),
which may indicate the existence of pathways alternative to SIZ1. This would mean either direct SUMO modification by E2
conjugases, or the action of alternative E3 ligases, in the modulation of HXK1 activities.

Methods

Request a detailed protocol

Plant handling: Arabidopsis thaliana mutant lines are in the ecotype Columbia-0 background. The T-DNA insertion mutants
siz1-2 (SALK_065397) and hxkl-1 (SALK_034233) were ordered from the NASC European Arabidopsis Stock Centre
(arabidopsis.info) and confirmed by genotyping using the following primers: LBb1.3 5’-ATTTTGCCGATTTCGGAAC-3’;
S1Z1-2 RP 5’-CACGACAGATGAAGCATTGTG-3’; SIZ1-2 LP 5’-GAGCTGAAGCATCTGGTTTTG-3’; HXK1 RP 5’-
AGCTCGTCTCTCTGCTGCTGGA-3’; HXK1 LP 5-CAGAACTCCAGTGAAGTGAGCTTTGA-3’. Synchronized
Arabidopsis seeds were stratified, surface sterilized and sown onto MS medium as previously described by Castro et al.
(2015). Plants were grown in growth chambers with a 16 h light/8 h dark cycle under cool white light (80 pE m™s™! light
intensity) at 22-24°C. For standard growth, in-vitro-grown 7-day-old seedlings were transferred to a soil to vermiculite (4:1)
mixture and maintained with regular watering.

Phenotyping: Rosette size was measured using the ImageJ software (https://imagej.nih.gov/ij/). Germination percentages
were determined 10 days after plating onto half-strength MS medium, by scoring green cotyledon appearance using a
stereomicroscope.
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