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Abstract
Resveratrol as well as natural products biosynthetically derived from it, have been shown to have protective effects against
oxidative stress. However, these compounds possess poor druglike properties. At sub-nanomolar concentrations, a novel
compound (RVM-6) inspired by a resveratrol natural product prolongs synaptic viability in neuromuscular junctions in D.
melanogaster exposed to acute oxidative stress.
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Figure 1. 1a) Structure of RVM-6. 1b) RVM-6 improves synaptic viability in larvae exposed to oxidative stress.:

a) Structure of RVM-6 prepared in the Lepore Laboratory. b) Average times to synaptic failure are shown for w1118 D.
melanogaster 3rd-instar larvae at different concentrations of Resveramorph 6 (RVM-6) in solution (total HL-3 n = 6; 2.25 mM
H2O2 n = 6; 0.1 nM RVM-6 + H2O2 n = 2; 0.5 nM RVM-6 + H2O2 n = 4; 1.0 nM RVM-6 + H2O2 n = 6). HL-3 saline was a
sham condition and positive control, and 2.25 mM H2O2 was used as a negative control. Time to synaptic failure is the time in
which it takes the excitatory junction potential to fall below a 1.00 mV threshold. Larvae exposed to the HL-3 sham condition
averaged 199.2 minutes to reach synaptic failure. Animals exposed to 2.25 mM H2O2 averaged 53.3 minutes to synaptic
failure. Larvae exposed to 0.1 nM RVM-6 + H2O2 averaged 75 minutes to reach synaptic failure. Larvae exposed to 0.5 nM
RVM-6 + H2O2 averaged 161.3 minutes to reach synaptic failure. Animals exposed to 1.0 nM RVM-6 + H2O2 averaged 148.3
minutes to synaptic failure. Data are means ± the standard error of the mean (SEM). Statistical significance (p < 0.05) was
designated utilizing letters where different letters indicate statistical differences, and the same letter indicates non-significance;
one-way ANOVA and Holm-Sidak posthoc analysis.
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Drosophila melanogaster has been an effective model to study disease and oxidative stress tolerance (Armstrong et al., 2011;
Mirzoyan et al., 2019; Ugur et al., 2016). Of particular interest, the neuromuscular junction in Drosophila melanogaster
utilizes glutamate as an excitatory neurotransmitter, which likens it to the human central nervous system (Ataman et al., 2006;
Menon et al., 2013; Ugur et al., 2016). One of Drosophila’s major benefits as an invertebrate model is for novel drug
screening; both third instar larvae and adult flies have been well described as powerful drug discovery tools, especially for
neuroprotective compounds (Millet-Boureima et al., 2021; Newman et al., 2011; Pandey & Nichols, 2011).

Resveratrol natural products are well known for their antioxidant activities (Matsuura et al., 2015). For example, the
resveratrol dimer ε-viniferin is thought to function as a radical scavenger and its isoprenylated analogs have been
demonstrated to exhibit inhibitory activity against human monoamine oxidase B (hMAO-B) leading to neuroprotective effects
against ROS generation and hydrogen peroxide-induced apoptosis, albeit at micromolar-level potencies (Shang et al., 2022;
Tang et al., 2019). Nevertheless, the polyphenolic structures of resveratrol natural products often lead to rapid hepatic
clearance, as was demonstrated in the case of ε-viniferin, making them poor candidates for further development as drugs
(Courtois et al., 2017). As part of a program to create more druglike compounds inspired by resveratrol natural products, we
previously disclosed two novel [3.2.1] bicyclic compounds (Bollinger et al., 2019). In this work, using drosophila larva
electrophysiology recordings, we have now examined RVM-6 to further explore this compound class (Fig. 1a). We found that
the effective threshold for RVM-6 against an oxidative stressor was 0.5 nM, and we did not detect any deleterious effects at
twice that dosage (Fig. 1b).

Though the mechanism of RVM-6 remains an area of investigation, this compound exhibits protective effects in the sub-
nanomolar range. The only other reported neuroprotective small molecule (AND-302) showed no activity at 0.5 nM, well
above its reported effective dose (0.09 nM) in hippocampal cell cultures (Smith et al., 2014). The current results offer
encouraging evidence that the RVM compound system is worthy of further study as neuroprotective agents. Though some
groups in the dataset are limited by sample size, the current pilot study’s findings show little variance and are in line with
previously published data (Bollinger et al., 2019). These findings serve to provide informative preliminary data that will spur
future studies and inquisition about structure-activity relationships for future RVM compounds. The next step will be to
examine more RVM analogs and perform a comprehensive SAR analysis to elucidate the pharmacokinetic properties of this
family of compounds.

Methods
Drosophila larva electrophysiology: Individual Drosophila larvae were collected and placed on a glass-dissecting plate
containing ~2 mL of Schneider's insect medium (Sigma, St. Louis, MO). Each larva was positioned with the dorsal side up on
the dissecting dish using standard insect pins. Removal of the internal organs and central nervous system was achieved by
making a longitudinal cut in the anteroposterior direction along the dorsal surface to expose the underlying segmental muscles
and nerves. An extracellular glass suction electrode was used to stimulate segmental nerves in muscle segments. The
postsynaptic excitatory junction potential (EJP) was recorded from muscle 6 with a sharp intracellular glass recording
electrode filled with 3 M KAc (∼40 MΩ).

The preparation medium was replaced with HL-3 saline (1.5 mM CaCl2, 20 mM MgCl2, 5 mM KCl, 70 mM NaCl, 10 mM
NaHCO3, 5 mM BES, 115 mM sucrose, 5 mM trehalose·2H2O) made fresh daily (Macleod et al., 2002; Stewart et al., 1996).
EJP recordings were viewed with an oscilloscope and digitally stored using the Scope program (AD Instruments, Colorado
Springs, CO) for analysis. Evoked EJPs from repetitive stimulation (0.3-ms pulses delivered suprathreshold with a 1-Hz
frequency) of both axons in larval muscle 6 were recorded in a stop-flow condition. EJP recordings were taken until synaptic
transmission failure (amplitude <1 mV) occurred.

Intracellular recordings of the resting membrane potential (RMP) and input resistance were measured from larval muscle 6
with signals amplified by an IX1 intracellular preamplifier (Dagan, Minneapolis, MN). These measurements were taken as
previously described (Zhang & Stewart, 2010). Briefly, RMP measurements were taken from animals if the initial potential
stabilized between −60 to −70 mV. If the membrane potential was equal to −45 mV or more depolarized, the preparation was
discarded. Input resistance was measured by injecting small current pulses of 2 nA (40-ms duration at 1-Hz frequency) applied
continuously. Electrode resistance was canceled prior to measuring the input resistance by adjusting the bridge balance control.
Resistance was calculated using Ohm's law and only muscle fibers with an initial input resistance >5 or <40 MΩ were assayed.

Pharmacological manipulations: Drugs were dissolved directly into HL-3 saline solution and about 5 mL of solution were
aliquoted into a transparent tube. Pharmacological manipulations were completed using a bath switch from HL-3 to HL-3 with
drug manipulations at 4-5 minutes into trial after recording saline baseline data. HL-3 with drug manipulation remained a
continuous exposure throughout the remainder of the trial. The compounds tested was RVM-6. RVM-6 is a novel compound;
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however, its synthesis followed a previously published procedure (Bollinger et al., 2019). Additionally, following a previous
disclosure (Smith et al. 2014), AND-302 was synthesized.

Reagents
Strain: w1118 (3rd instar larvae only)

Chemicals: H2O2 (CAS: 7722-84-1), RVM-6 and AND-302 (synthesized and provided by the Lepore Group)
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