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Abstract

Cytokinesis, the physical division of one cell into two, is typically assumed to use the same molecular process across animal
cells. However, regulation of cell division can vary significantly among different cell types, even within the same multicellular
organism. Using six fast-acting temperature-sensitive (ts) cytokinesis-defective mutants, we found that each had unique cell
type-specific profiles in the early 2-cell through 8-cell C. elegans embryo. Certain cell types were more sensitive than others to
actomyosin and spindle signaling disruptions, disrupting two members of the same complex could result in different

phenotypes, and protection against actomyosin inhibition did not always protect against spindle signaling inhibition.
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Figure 1. Cytokinesis outcomes in the early C. elegans embryo in different temperature sensitive mutants:

A) Schematic depicting the early C. elegans embryonic lineages from the 1-cell to 8-cell stage. B) Temperature-sensitive (ts)
mutant alleles, protein functions, and complexes affected; F-actin=filamentous actin; GAP=GTPase activating protein. C)
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Representative maximum intensity projection image of clustered embryos scored for cytokinesis completion or failure. Scale
bar=20 pm; green arrowheads=cytokinesis completes; grey arrowheads=cytokinesis fails. D) Graphs showing the percentage
of each cell type that completes (green) or fails (gray) in cytokinesis after upshift to restrictive temperature by column in

control (no ts mutations), myosin-I'"™2(ts) and formin®*"(ts) (actomyosin contractile ring), cyk-4(ts) and MKLP1%"4(ts)

(Centralspindlin complex), and Aurora-B%2(ts) and INCENP®P-I(ts) (Chromosomal Passenger Complex (CPC)) mutant 2-
cell (top rows), 4-cell (middle rows), and 8-cell (bottom rows) embryos. n=number individual cells scored per cell type and
genotype (by color) indicated to the right of each bar.

Description

Cytokinesis, the physical division of one cell into two daughter cells, is critical for multicellular organismal development and
tissue homeostasis. On one hand, defects in cytokinesis can lead to diseases such as cancer (Lacroix & Maddox, 2012; Lens &
Medema, 2019). On the other hand, in some cell types (e.g., cardiomyocytes, hepatocytes, etc.), cytokinesis is naturally
programmed to fail, leading to binucleation and polyploidy (Lacroix & Maddox, 2012). In animal cells, cytokinesis is driven
by constriction of an actomyosin contractile ring at the cell division plane, positioned by signaling from spindle microtubules
(for review see (D'Avino et al., 2015; Green et al., 2012)), chromosomes (Beaudet et al., 2017; Canman et al., 2003; Kiyomitsu
& Cheeseman, 2013), and cell polarity (Cabernard et al., 2010; Jordan et al., 2016). The mechanisms that underlie cell type-
specific regulation of cytokinesis are not well understood.

Here we compared the cell type-specific regulation of different cytokinesis pathways in the same model system: the C. elegans
embryo. The C. elegans early lineage map is well characterized and invariant from embryo to embryo, making each cell easy
to identify (Fig. 1A) (Sulston et al., 1983). Asymmetric cleavage divisions and cell fate signaling lead to differentiation and
cell type-specific fate specification as early as the 2-cell stage. Thus, the early worm embryo serves as a simple multicellular
system to study cell type-specific responses to genetic perturbations in cytokinesis in the same organism.

To specifically disrupt cytokinetic protein function in individual cells during early development, we turned to our collection of
fast-acting (<20 sec) temperature-sensitive (ts) cytokinesis-defective mutants. We used six ts mutants that affect three different

cytokinesis complexes (Davies et al., 2014): the actomyosin contractile ring (myosin-II@y'—Z(ts) and diaphanous formin-CY&

Lits)); the centralspindlin complex (MKLP12%:4(ts) and cyk-4(ts)); and the Chromosomal Passenger Complex (CPC)

(INCENPi—Cp'—l( ts) and Aurora—BM(ts)) (Fig. 1B) (Canman et al., 2008; Davies et al., 2014; Liu et al., 2010; Severson et al.,
2000). These conditional mutations allow cell division to occur at permissive temperature, but completely block cytokinesis in
the 1-cell embryo when upshifted to restrictive temperature (Davies et al., 2014).

To test for cell type-specific responses to acute cytokinesis complex disruption in C. elegans, we imaged clustered
asynchronous control and ts mutant embryos before and after upshifting to restrictive temperature (Fig. 1C). To control
temperature, we used the Therminator, a fluidic device that allows rapid (<17 sec) upshift from permissive (16°C) to restrictive
temperature (26°C) while simultaneously imaging using a spinning disc confocal microscope (Davies et al., 2014; Davies et
al., 2017). We examined cytokinesis success or failure in each cell in 2-cell through 8-cell stage embryos (14 cells total per
genotype) after upshift to restrictive temperature if the upshift occurred before anaphase onset (actomyosin and centralspindlin
mutants, controls) or nuclear envelope breakdown (CPC mutants) (Davies et al., 2014) in that cell (Fig. 1D). As expected, in

control 2- through 8-cell embryos, all cells completed cytokinesis successfully upon temperature upshift and, in myosin-II*"=

2 ts) embryos, almost all cells failed in cytokinesis (Fig. 1D). In all other ts mutants, we observed cell type differences starting
at the 2-cell or 4-cell stage (Fig. 1D). In formin-c)’ﬂ(ts) 2-cell embryos, both cells failed in cytokinesis, but in 4-cell embryos,
dramatic cell type-specific differences in the outcome of cytokinesis were observed: ABa and ABp failed in cytokinesis but
EMS and P2 frequently completed cytokinesis, as described (Connors et al., 2024; Davies et al., 2018). In formin-cyg(ts) 8-
cell embryos, most cells completed cytokinesis >80% of the time (except for ABpl and ABpr; 21% and 55% completed
cytokinesis, respectively). In centralspindlin and CPC mutant 2-cell embryos and 4-cell embryos, a similar pattern of
cytokinesis failure or completion were observed in each cell type (Fig. 1D): in 2-cell embryos, the P1 cell completed
cytokinesis at a higher rate than the AB cell (except in CPC Aurora-B4=2(ts) embryos), and in 4-cell embryos, the P2 cell
frequently (42-98%) completed cytokinesis whereas ABa, ABp, and EMS only completed cytokinesis 0-34% of the time. In 8-
cell embryos, there were cell type-specific differences in cytokinesis for all centralspindlin and CPC mutants, even for
mutations that affect the same protein complex (Fig. 1D). For example, in centralspindlin ¢yk-4(ts) embryos at the 8-cell stage,
most cells completed cytokinesis, except for ABpl and ABpr; in contrast, in centralspindlin MKLP124(ts) 8-cell embryos,
only MS, E, and C were able to complete cytokinesis at any frequency (Fig. 1D). Additionally, in CPC Aurora—BM( ts) 8-cell
embryos, no anterior cell types (ABal, ABar, ABpl, ABpr) were able to complete cytokinesis while all posterior cell types
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(MS, E, C, P3) completed cytokinesis 20-56% of the time (Fig. 1D). In contrast, in CPC INCENPXP-L(ts) 8-cell embryos, cells
in the anterior (ABal, ABar, ABpl, ABpr) were able to complete cytokinesis 20-31% of the time, while cells in the posterior
MS, E, C, P3) completed cytokinesis a striking 91-100% of the time, (Fig. 1D). Thus, cell type-specific regulation of
cytokinesis differs after disruption of different protein complexes/activities and can be widely observed in the early worm
embryo.

We were initially surprised that the pattern of cell type-specific cytokinesis success versus failure was so different between
cytokinesis-defective mutants that affect the same complex. Yet each mutant differentially affects protein function and

complex activity. The formin©YX-L ts mutation affects the dimerization domain and greatly compromises F-actin nucleation

activity (Davies et al., 2014); our previous results suggest that cell fate determinants regulate cell type-specific responses to
CYK-1

formin inactivation (Connors et al., 2024; Davies et al., 2018). The rnyosin—HMY'2 ts mutation is in the neck region
(Liu et al., 2010), which likely decouples and inactivates myosin motor domains. Our upshifts often occurred several minutes
before anaphase onset when myosin-IINMY-2 a]so plays an essential role in cell polarity/asymmetric cell division and cell fate
specification/cell identity (Guo & Kemphues, 1996; Liu et al., 2010; Munro et al., 2004). Thus, this mutant will reduce the

differences between cell types and affect cytokinesis in all cells equally, as was observed (Fig. 1D). The centralspindlin
complex mutants also have dramatically different effects on complex activity. While the MKLP1£EN-4 (s mutation completely
blocks centralspindlin complex formation and central spindle microtubule bundling (Pavicic-Kaltenbrunner et al., 2007;
Severson et al., 2000), the CYK-4 ts mutation only affects the Rac GAP (GTPase-activating protein) domain (Canman et al.,
2008). Similarly, while the Aurora-BAIR=2 s mutation disrupts the kinase domain and thus catalytic activity of the CPC
(Bishop & Schumacher, 2002), the INCENPISE-L (s mutation reduces but does not totally block Aurora-BAIR=2 kinase activity
(Davies et al., 2014). Thus, it seems logical that cytokinesis is more frequently successful in the less disruptive mutant
condition for each complex.

We also observed cases of "inherited" resistance to disruption of cytokinesis proteins from mother cells to daughter cells, as
well as de novo resistance in daughter cells born from mother cells that typically would have failed in cytokinesis upon protein
inactivation. In general, most cells in the 8-cell embryo completed cytokinesis successfully after cytokinesis protein
inactivation more often than their mother cells in the 4-cell embryo, independent of genotype. As an extreme example, in cyk-
4(ts) 4-cell embryos, while the ABa cell almost always failed in cytokinesis, both of its 8-cell stage daughter cells, ABal and
ABar, completed cytokinesis at a high frequency (67% and 50% cytokinesis completion, respectively) (Fig. 1D). Because cells
get smaller with each cleavage division, this de novo resistance could be explained by an “action at a distance” model, wherein
spindle signaling molecules diffuse to the cell cortex (Canman, 2009; von Dassow et al., 2009); assuming the smaller cell
volume would facilitate diffusion. In contrast, we noted specific cells in specific genotypes that divided less frequently than
their mother cells. For example, in MKLP1%0=4(ts) 4-cell embryos, the P2 cell successfully divided 44% of the time but this
resistance was only inherited by one daughter cell and not the other (38% and 4% cytokinesis completion in C and P3 daughter
cells, respectively) (Fig. 1D). Future experiments will determine if similar or different mechanisms drive cell type-specific
regulation of cytokinesis in different lineages and how cell fate specification, cell size, and the cellular niche regulates the
cytokinesis machinery in the context of a multicellular organism.

Methods

Worm husbandry

Worm strains were grown on 60 mm petri plates (T3308, Tritech) filled with (PourBoy 4, Tritech) 10.5 mL nematode growth
media (NGM: 23 g Nematode Growth Medium (Legacy Biologicals), 1 mL 1M CaCly, 1 mL 1M MgSOy, 25 mL 1M K3POy,
975 mL ddH,O) seeded with 500 pL E. coli (OP50), as in (Brenner, 1974). Strains were maintained at 16°C in incubators
(Binder). We note that wormbase.org was used as a resource throughout this work (Sternberg et al., 2024).

Embryo preparation for imaging

On imaging days, gravid young adult hermaphrodites were maintained in an incubator at 13-14°C (2720213W, Wine
Enthusiast) and dissected on a stereo microscope (Olympus SZX16 with SDF PLAPO 1XPF objective) in cooled (13-14°C)
M9 buffer in a watch glass (742300, Carolina Biologicals). A hand-pulled glass pipette (VWR Pasteur Pipette) or a
borosilicate glass capillary (World Precision Instruments) was used as a mouth pipette to transfer embryos onto a thin 2% agar
pad placed on top of the Therminator specimen holder (Davies et al., 2014; Davies et al., 2017). Asynchronous embryos were
clustered using a single hair tool (Ted Pella). A 30 mm round No. 1.5 glass coverslip (Bioptechs) was mounted on top of the
embryos for imaging.

Time-lapse live cell imaging
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Time lapse live cell imaging was done on an inverted microscope stand (Nikon, Eclipse Ti) with a spinning disc confocal head
(CSU-10, Yokogawa; Borealis upgrade (Spectral Applied Research)), a CCD camera with 2 x 2 binning (Orca-R2,
Hamamatsu), a Piezo-motorized stage (ASI) for Z-sectioning, and either a 20x Plan Apo 0.75 N.A. dry objective (Nikon) or a
40x Plan Apo Lambda 0.95 N.A. dry objective (Nikon). An acousto-optic tunable filter (Spectral Applied Research) was used
to control excitation laser light (150 mW 488 nm (GFP) and 561 nm (mCherry); ILE-2, Spectral Applied Research) and a filter
wheel (Sutter) was used for 525/50 nm or 620/60 nm emission filter (Chroma) selection. Focus was maintained (Nikon,
Perfect Focus) before each timepoint: 12 x 2 or 11 x 2 pym Z-sections every 60 or 90 seconds; 100 ms and 100-150 ms
exposures for GFP and mCherry channels, respectively.

Temperature control for live cell imaging

Live cell imaging was performed in an imaging room with a mini-split heat pump to control temperature (MHWX,
MultiAqua). Room temperature (19-23°C) was continuously monitored with 4-5 digital thermometers and a Bluetooth sensor
(SensorPush) on the microscope stage. The Therminator was used as described previously (Davies et al., 2014; Davies et al.,
2017). Briefly, one water/isopropanol bath was set to permissive temperature (16°C) and the second bath was set to restrictive
temperature (26°C). 2-cell through 8-cell embryos were maintained on the specimen holder at 16°C until the desired time at
which point the Therminator was switched to use the 26°C water bath and rapidly upshift sample temperature to restrictive

temperature (25.5-27.3°C) prior to anaphase onset (control, myosin-II™=2(ts), formin©%L(ts), MKLP12"4(ts), and cyk-4(ts)
embryos) or nuclear envelope breakdown (INCENPXP-L(ts) and Aurora-B%2(ts) embryos) in each cell.

Cytokinesis outcome analysis

FIJI (FLJI is Just ImageJ) software (Schindelin et al., 2012) was used for all data analysis. Cytokinesis outcomes were scored

manually on maximum projection images of both channels (GFP::PHPLC‘S and mCherry::histone H2BHIS=58) 55 in (Connors et

al., 2024). Individual cells were scored only if upshift to restrictive temperature occurred at a time before anaphase onset (or
air-2

nuclear envelope breakdown (>450 seconds prior to anaphase onset) in INCENPLCP'—I( ts) and Aurora-B
cell and at least one of its daughter cells entered anaphase before the end of the image series.

(ts) embryos) in that
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