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Abstract
The mitochondrial ribosome (mitoribosome) translates mitochondrial genome encoded proteins essential for cellular energy
production. Given this critical role, defects in the mitoribosome can cause mitochondrial stress and manifest as multisystemic
diseases. In a screen for unique activators of the mitochondrial unfolded protein response (UPRmt) in Caenorhabditis elegans,
we recovered a strain harboring a missense mutation in the gene encoding mitochondrial ribosome protein S31 (MRPS-31)—a
component of the mitoribosome small subunit. Herein, we confirm causality of the mrps-31 allele and characterize its
induction of UPRmt and impact on organismal development, providing a valuable model for further study of the mitoribosome.
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(A) Schematic of the C. elegans mrps-31 gene structure, highlighting the T>A mutation responsible for UPRmt reporter
activation in strains harboring the mpt219 and mpt220 alleles. (B) AlphaFold predicted structure of the C. elegans MRPS-31
from UniProt (UniProt Consortium, 2023), with the V50E mutation site marked in red. (C) Corresponding brightfield and
fluorescence images of UPRmt reporter (hsp-6p::GFP) activation in day 2 adult (D2A) wildtype, mrps-31(mpt219), and mrps-
31(mpt220) animals. Scale bar 200 μm. (D) Fluorescence intensity quantification of hsp-6p::GFP reporter activation in
individual D2A wildtype, mrps-31(mpt219), and mrps-31(mpt220) animals normalized to hsp-6p::GFP in a wildtype
background (n=24 for each condition, au=arbitrary units, mean and SD shown, ordinary one-way ANOVA with Tukey's
multiple comparison test). (E) Corresponding brightfield and fluorescence images of UPRmt reporter (hsp-6p::GFP) activation
in D2A wildtype and mrps-31(mpt219) animals on control and atfs-1 RNAi. Scale bar 200 μm. (F) Fluorescence intensity
quantification of hsp-6p::GFP in individual D2A wildtype and mrps-31(mpt219) animals on control and atfs-1 RNAi
normalized to hsp-6p::GFP in a wildtype background on control RNAi (n=24 for each condition, au=arbitrary units, mean and
SD shown, two-way ANOVA with Tukey's multiple comparisons test). (G) Corresponding brightfield and fluorescence images
of UPRER reporter (hsp-4p::GFP) activation in day 2 adult (D2A) wildtype and mrps-31(mpt219) animals. Scale bar 200 μm.
(H) Fluorescence intensity quantification of hsp-4p::GFP reporter activation in individual D2A wildtype and mrps-
31(mpt219) animals normalized to hsp-4p::GFP in a wildtype background (n=24 for each condition, au=arbitrary units, mean
and SD shown, unpaired t-test). (I-K) Percentage of N2 and mrps-31(mpt219) animals that have reached L4/adulthood at
65hrs, 74hrs, and 89hrs respectively (n=50).

Description
Over 1,100 proteins are necessary to make a functional mitochondrion (Rath et al., 2021). Of these, 99% are encoded by the
nucleus and thereafter targeted to the mitochondria while the remaining few are encoded by the mitochondrial genome
(mtDNA) (Weinhouse, 2017). The 13 proteins encoded by mammalian mtDNA are critical components of the electron
transport chain, necessary for creating the electrochemical gradient that results in the production of ATP—the major source of
cellular energy. Unlike nuclear-encoded mitochondrial proteins, the translation of mtDNA encoded proteins depends on the
mitochondrial ribosome (mitoribosome), a distinct and specialized ribosome unique from its cytosolic counterpart (Greber &
Ban, 2016).

Given the role of the mitoribosme in translating mtDNA-encoded proteins, dysregulation of any of the 82 nuclear-encoded
mitoribosomal proteins (MRPs) can lead to significant mitochondrial stress (De Silva et al., 2015). In fact, mutations in MRPs
can manifest as multisystemic human diseases including sensorineural hearing loss, hypertrophic cardiomyopathy, and
neurological deterioration, due to disrupted mitochondrial bioenergetics (Rötig, 2011; De Silva et al., 2015). Therefore,
continued study and characterization of MRPs remain important for understanding basic mitochondrial biology and associated
human health.

In response to mitochondrial dysregulation, cells activate retrograde signaling pathways to mitigate stress (Ng et al., 2021).
One such mechanism is the conserved mitochondrial unfolded protein response (UPRmt). UPRmt promotes survival and
recovery of the mitochondrial network by activating signaling cascades that result in the upregulation of nuclear-transcribed
chaperones and proteases (Shpilka & Haynes, 2018). In Caenorhabditis elegans, where UPRmt is well characterized, UPRmt

activation is dependent on the dual-targeted transcription factor, ATFS-1. In healthy cells, ATFS-1 is predominantly imported
into the mitochondria (Nargund et al., 2012). However, under conditions of mitochondrial stress, ATFS-1 traffics to the
nucleus where it drives the expression of mitochondrial-protective genes (Nargund et al., 2015). This mechanism has been
leveraged in C. elegans to develop a transgenic reporter strain in which one of the targets of ATFS-1, the hsp-6 promoter,
drives the expression of GFP (Yoneda et al., 2004). Therefore, GFP expression in this strain is a proxy for UPRmt activation.

Previously, we utilized the hsp-6p::GFP reporter to conduct a forward genetic screen for mutations that activate the
mitochondrial unfolded protein response (UPRmt) specifically in the intestine of C. elegans (Held et al., 2024). Six
independent mutants were recovered, one of which (MRP650), harbored a putative causal missense mutation in mitochondrial
ribosome protein S31 (mrps-31), homolog of the human MRPS31, which encodes a component of the small subunit of the
mitoribosome. However, as is typical with random mutagenesis, there are other mutations linked to the mrps-31 variant. To
determine if the MRPS-31 V50E mutation found in MRP650 was causal in activating UPRmt (Figure 1A, 1B), we introduced
it into a N2 wildtype genetic background using CRISPR/Cas9 and assessed hsp-6p::GFP reporter activation in live animals.
We recovered and sequence verified two independent, MRPS-31 V50E CRISPR hits (alleles mpt219 and mpt220, denoted
mrps-31(mpt219) and mrps-31(mpt220)), and fluorescence microscopy revealed similarly robust UPRmt reporter activation in
adult animals of both alleles (Figure 1C, 1D). Thus, we further characterized one of these alleles: mrps-31(mpt219).
Knockdown of ATFS-1, the central transcription factor of UPRmt, completely abrogates UPRmt activation in mrps-31(mpt219)
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animals (Figure 1E, 1F). In addition, mrps-31(mpt219) animals on atfs-1 RNAi are smaller and display developmental defects.
These data suggest that MRPS-31 V50E is the causal mutation in strain MRP650 recovered from the screen and that it
activates canonical ATFS-1-dependent UPRmt.

To determine whether the stress induced by mrps-31(mpt219) is specific to the mitochondria, we also assessed activation of
the endoplasmic reticulum unfolded protein response (UPRER) reporter, hsp-4p::GFP—a proxy for ER stress and
compromised cellular proteostasis (Calfon et al., 2002). We find that hsp-4p::GFP reporter is only very slightly induced in
mrps-31(mpt219) animals, much less than what is observed by known activators of UPRER (Figure 1G, 1H) (Calfon et al.,
2002; Hou et al., 2014). These data suggest that stress induced by mrps-31(mpt219) is predominantly specific to the
mitochondria.

Mitochondrial stress often correlates with delayed organismal development (Feng et al., 2001; Yang & Hekimi, 2010). Thus,
we assessed development of mrps-31(mpt219) animals. The N2 wildtype C. elegans strain develop from a fertilized egg into a
reproductively mature, egg laying hermaphrodite adults in approximately 65hrs at 20°C (Byerly et al., 1976). Therefore,
developmental stage was assessed at 65hrs at which time 96% of N2 animals were reproductive adults while only 2% of mrps-
31(mpt219) animals had reached adulthood (Figure 1I). Developmental stage was also assessed at 74hrs where 34% of mrps-
31(mpt219) animals reached reproductive maturity and at 89hrs, where all animals had reached reproductive adulthood (Figure
1J, 1K).

It is known that compromising mitoribosome function leads to mitochondrial stress and dysfunction (Rolland et al., 2019;
Lopez Sanchez et al., 2021). However, mitoribosome defects can be challenging to study because these genes are essential
thus rendering homozygous mutations non-viable. For example, the National BioResource Project isolated a C. elegans strain
with a 450bp deletion in exon 1 of mrps-31 (allele: tm1314) but these animals have a sterile/lethal phenotype (Mitani, 2009).
Herein, we have identified and characterized a hypomorphic mrps-31 allele in C. elegans, which induces mitochondrial stress
yet is reproductively viable and able to be maintained as a homozygous population. UPRmt reporter activation and slowed
development phenotype of mrps-31(mpt219) animals is consistent with a loss-of-function mutation. Interestingly, mrps-
31(mpt219) exhibits robust UPRmt reporter activation predominantly in the intestine of C. elegans, which is unique compared
to other systemic mutations that impair electron transport chain function which activate UPRmt in all somatic tissues (Baker et
al., 2012; Held et al., 2024). This tissue specific activation suggests that MRPS-31 may not be required equally across all
tissues or that mrps-31(mpt219) selectively impairs function in the intestine. Our recovery of a mutation in a mitoribosome
subunit that exhibits features of mitochondrial stress yet is reproductively viable provides a valuable system for studying
mitoribosome biology and has potential to serve as a model for disorders associated with mitoribosome dysfunction.

Methods
Worm Maintenance- Animals were grown on nematode growth media (NGM) plates seeded with OP50 E.coli obtained from
the Caenorhabditis Genetics Center. All strains were maintained at 20°C.

CRISPR/Cas9- CRISPR was conducted using Alt-R S.p. Cas9 Nuclease V3 (IDT#1081058) and tracrRNA (IDT#1072532) as
previously described (Dokshin et al., 2018). Instead of using rol-6 plasmid, we used dpy-10 endogenous editing as a co-
injection marker as previously described (Paix et al., 2015). Once the desired edit was recovered, the dpy-10 injection marker
was outcrossed using a wildtype background (N2).

Genetic Crosses- Strains resulting from genetic crosses were generated by crossing 15-20 heterozygous males of a given strain
to 5-8 larval stage 4 (L4) hermaphrodites of another strain (heterozygous males were first generated by crossing wildtype N2
males to L4 hermaphrodites of a strain). F1 generation L4s were cloned out from the cross plates. Once F2 progeny were laid,
the F1 adult was genotyped and screened for the alleles of interest. F2 progeny were cloned out from F1 plates harboring the
allele(s) of interest and once F3 progeny were laid, the F2 animals were genotyped and screened again for the alleles of
interest.

RNAi- RNAi by feeding was conducted as previously described (Held et al., 2022). Briefly, atfs-1 and empty vector RNAi
clones were grown up overnight at 37°C shaking from a single colony in 2mL liquid culture of LB supplemented with 50μg/ml
ampicillin. To make 16 RNAi plates, 50mL of LB supplemented with 50μg/ml ampicillin was inoculated with 500μL of
overnight culture and then incubated shaking overnight at 37°C. Following overnight incubation, cultures were induced by
adding an additional 50mL of LB supplemented with 50μg/ml ampicillin in addition to 8mM IPTG and then incubated shaking
at 37°C for 3.5-4hrs (to an OD550-600 of approximately .8). After incubation, the OD550-600 was taken and the cultures were
pelleted by centrifugation at 3900 rpm for 6min. Supernatant was removed and a mixture of 4mL of M9 supplemented with
8mM IPTG was made. Pellets were resuspended in the M9+IPTG mixture such that the final OD was standardized to 0.8.
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250μL of suspension was seeded onto standard 60mm NGM plates containing 1mM of IPTG. Plates were left to dry overnight
and then used within 1 week. Bacterial RNAi feeder strain was from the Ahringer RNAi Feeding Library, grown from a single
colony and identity confirmed by Sanger sequencing.

Fluorescence Microscopy- All animal imaging was performed using a Zeiss Axio Zoom V16 stereo zoom microscope. Worms
were immobilized on 2% agarose pads on microscope slides in ~1μL of 100mM levamisole (ThermoFisher #AC187870100)
and then a coverslip was applied.

Image Quantification- All fluorescent microscopy images were analyzed with FIJI. First, a region of interest was drawn
around the body wall of each worm using the brightfield image. Subsequently, the corresponding fluorescent image was
opened in the program and average fluorescent intensity of each individual biological replicate was obtained using the measure
function (which calculates the average pixel intensity by dividing the sum total fluorescent intensity by the total number of
pixels within the bounds of the trace) for each region of interest.

Development Assay- 25 gravid adult animals were plated on OP50 seeded 60mm NGM plates and allowed to lay embryos for
90min at room temperature. Following egg laying, 50 embryos per genotype were moved to a clean OP50 seeded NGM plate
and incubated at 20°C for 65 hrs. After incubation, development of wildtype and mutant animals were assessed. At this time,
all animals were L4 stage (characterized by the developing vulva) or later. Adulthood was determined by the presence of a line
of embryos flanking the vulva or the presence of vulval eversion (the final stage of vulva morphogenesis).

Reagents

Strain Genotype Available from

N2 wildtype CGC

MRP650 mpt140; zcIs13 V Held et al., 2024

GL347 zcIs13[hsp-6p::GFP] V CGC

SJ4005 zcIs4[hsp-4p::GFP] V CGC

MRP1054 mrps-31(mpt219[V50E]) III This study

MRP1055 mrps-31(mpt219[V50E]) III; zcIs13 V This study

MRP1057 mrps-31(mpt220[V50E]) III; zcIs13 V This study

MRP1056 mrps-31(mpt219[V50E]) III; zcIs4 V This study
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