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Abstract
The Schizosaccharomyces pombe septation initiation network (SIN) is required for cytokinesis and septation. The SIN
includes a protein kinase cascade that is assembled at spindle pole bodies (SPBs) in a cell cycle specific manner on a scaffold
consisting of Cdc11, related to human centriolin, and the a-helical protein Sid4. Here, we characterized temperature-sensitive
cdc11 and sid4 mutants isolated in the 1990s. We determined the mutations within each allele, examined their phenotypes, and
analyzed their growth compared with previously characterized mutant alleles. The new mutants described here expand the
toolkit for studying how the SIN assembles at SPBs.
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Figure 1. Characterization of sid4 and cdc11 mutant alleles.:

(A) Schematic of Cdc11, drawn to scale, with the predicted leucine-rich repeat (LRR) domain indicated in green. The cdc11
and sid4 mutations encoded by each allele are listed. (B) AlphaFold3 predicted structure and interaction between two copies of
Cdc11 (residues 571-1045) in green and Sid4 (residues 41-72) in magenta. The residues mutated in the cdc11 alleles are
labelled. (C) The indicated strains were grown in liquid YE at 25°C until they reached mid-log phase and then adjusted to the
same cell concentration measured by optical density (Moreno et al., 1991). Next, 10-fold serial dilutions were prepared and 2.5
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µL of each was spotted on YE agar plates and incubated at the indicated temperatures for 2-5 days prior to imaging. (D-E) The
indicated strains were grown at 25˚C and shifted to 36˚C for 4 hours. Samples were collected at both temperatures and cells
were fixed in 70% ethanol and stained with DAPI and methyl blue before imaging. Scale bar, 5 µm. (F-G) Quantification of
the number of nuclei per cell of the indicated strains from D and E. Scale bar, 5 μm. (H) Representative live-cell images of the
indicated strains grown at 25˚C (top panels) and then shifted to 36˚C for 4 hours (bottom panels). Scale bar, 5 μm.

Description
Schizosaccharomyces pombe spindle pole bodies (SPBs) serve as cellular signaling platforms (Cavanaugh and Jaspersen,
2017). One signaling pathway that is assembled at SPBs is the septation initiation network (SIN) (reviewed in (Johnson et al.,
2012; Simanis, 2015; Xiao and Dong, 2021). The SIN is a GTPase-regulated protein kinase cascade required in S. pombe for
the formation, maintenance, and constriction of the actomyosin-based cytokinetic ring; the SIN also guides the recruitment and
function of cell wall enzymes necessary for septation (Cheffings et al., 2016; Glotzer, 2017; Mangione and Gould, 2019).
Thus, in SIN mutants, cell division fails.

SIN signaling proteins are recruited by the centriolin-like scaffold protein, Cdc11, which is stably tethered to the SPB by the
ɑ-helical protein, Sid4 (Chang and Gould, 2000; Krapp et al., 2004; Krapp et al., 2001; Morrell et al., 2004; Tomlin et al.,
2002). Sid4, in turn, is anchored to the core S. pombe SPB protein Ppc89 (Hanna et al., 2024).

In a genetic screen for cytokinesis factors, several mutants mapping to cdc11 and a second mutant of sid4 were isolated but not
previously characterized (Balasubramanian et al., 1998; Nurse et al., 1976). We first determined the mutations within these
five alleles and also in cdc11-119 that was not previously reported in PomBase (Rutherford et al., 2024). For this, the cdc11 or
sid4 open reading frame (ORF) was amplified from each strain and sequenced. The cdc11-119 allele contained the same
mutations as previously described for cdc11-123 (R947H and T1041I) (Rutherford et al., 2024) (Figure 1A). cdc11-B7 had one
of these mutations (R947H)(Figure 1A). All mutations identified in the various cdc11 alleles, including the previously
sequenced cdc11-136 allele fall within the leucine-rich repeat (LRR) domain of the protein (Rutherford et al., 2024) (Figure
1A-C). AlphaFold3 (Abramson et al., 2024) predicted that the Cdc11 LRRs form a parallel dimer so that both sets of N- and
C-termini are positioned at opposite ends of the predicted structure (Figure 1B). Further, when modelled with two N-termini of
Sid4, AlphaFold3 predicted a direct interaction, as expected from previous structure-function analysis (Krapp et al., 2004;
Tomlin et al., 2002). The predicted binding interface consists of Sid4 residues 42-71 which form a pair of ɑ-helices that each
dock onto the very C-terminus of a Cdc11 LRR molecule (Figure 1B). The residues that are mutated in the various cdc11
alleles map near the Sid4-Cdc11 binding interface or the Cdc11-Cdc11 dimer interface, suggesting that these interactions could
be disrupted in the mutants (Figure 1B). Unexpectedly, no mutations were identified in the unstructured N-terminus of Cdc11,
the region of the protein required to recruit several SIN components to the SPB (Krapp et al., 2004). The mutation in sid4-459
resulted in a frameshift mutation that causes a loss of the last four amino acids of Sid4 and the addition of 30 nonsense amino
acids to the protein. The C-terminus of Sid4 docks to the SPB scaffold, Ppc89 (Hanna et al., 2024,) and therefore Sid4-459
likely loses its Ppc89 connection at restrictive temperature as does the mutation in Sid4-SA1 (L629P) (Chang and Gould,
2000).

To characterize the new mutants, we first compared their growth to wildtype cells and the previously sequenced and
characterized alleles (cdc11-136 and cdc11-123; sid4-SA1). While all strains grew at 25°C, the temperature sensitive alleles
grew poorly or not at all at 36°C (Figure 1C). To visualize the cell phenotypes, we stained the nuclei and septa after the cells
were grown at 25°C and then shifted or not to 36˚C for 4 hours. At 25°C, all strains resembled wildtype (Figure 1D-E). Upon
shift to the restrictive temperature, most cdc11-136, cdc11-123, cdc11-B7 and cdc11-119 cells became multinucleated and did
not form a septum (Figure 1D and F). cdc11-B1 and cdc11-B3 cells also became binucleated or multinucleated, but some
appeared to attempt septation and failed (Figure 1D and F). Lastly, cdc11-A7 and sid4-459 cells primarily formed a
“boomerang” of paired mononucleate cells that frequently lysed (Figure 1D-F). These latter phenotypes are indicative of less
penetrant SIN mutants.

Lastly, we examined the localization of the Cdc11 mutant proteins by tagging each with GFP. It was previously reported that
while Cdc11-123-GFP is lost from the SPB at restrictive temperature, Cdc11-136-GFP remains there indicating that 1) it
retains its ability to bind Sid4, and 2) it loses its ability to recruit a downstream SIN component (Krapp et al., 2001). Cdc11-
A7, like Cdc11-136, was retained at the SPB at 36˚C while Cdc11-B1 SPB localization was lost and Cdc11-B3 was reduced
(Figure 1H). Interestingly, we found that Cdc11-B7 remained at the SPB at 36˚C. This mutation shares the R947H mutation
with Cdc11-123 that is lost from the SPB, indicating that T1041 is involved in tethering Cdc11 to Sid4 and that R947 must be
involved in a distinct interaction (Figure 1H). Taken together, the characterization of these cdc11 mutants has informed the
separable functions of the Cdc11 LRR and it will be interesting in future studies to examine what interaction(s) Cdc11 residues
897 and 947 are involved in.
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Methods
Yeast strains and methods

S. pombe strains were grown in yeast extract (YE) and standard S. pombe mating, sporulation, and tetrad dissection techniques
were used to construct new strains (Moreno et al., 1991). All spot assays were performed twice with reproducible results.

Tagged strains were generated by adding sequences encoding green fluorescent protein (GFP) and resistance cassette kanMX6
or mCherry and resistance cassette natMX6 at the 3′ end of the endogenous open reading frame using pFA6 cassettes as
previously described (Bahler et al., 1998; Wach et al., 1994). G418 (geneticin, 100 µg/mL, Thermo Fisher Scientific; cat#
11811031) and nourseothiricin (clonNAT, 100 µg/mL, GoldBio; cat# N-500-100) were used for selection of kanMX6 or
natMX6 cells, respectively. Successful tagging of the strains was verified by whole cell PCR (forward oligos: a 20 bp sequence
located ~200 bp upstream of the stop codon of the corresponding ORF; reverse oligos: CGCTTATTTAGAAGTGGCGCG,
which is a common sequence in the adh1 terminator present in the pFA6 cassettes, TCATCCATGCCATGTGTAATCC, for
GFP, and GTACAGTCTGTCCATGCCGC for mCherry).

Molecular biology methods

The cdc11 open reading frame from cdc11-B3, cdc11- B7, and cdc11-119 cells was amplified using an oligonucleotide 74 bp
upstream of the start site (GATTGAGTCCCAGTACCACG) and a second oligonucleotide 45 bp downstream of the stop
codon (CAACAGCGAAACAATCTTGCT) (Integrated DNA technologies). The cdc11 open reading frame was amplified
from cdc11-A7 and cdc11-B1 cells using overlapping oligonucleotides. Specifically, an oligonucleotide 351 bp upstream of the
start site (GTGAATCTCTCATGCACAAG), an oligonucleotide within the ORF (CTAGCATCTTCGTCGGTTTCA), as well
as another oligonucleotide within the ORF at 1500 bp (CCTCATTCCTTTCCTTTGCGT) and an oligonucleotide 695 bp
downstream of the stop codon (TCGTTCTCTGTCTTCCTATG) were used (Integrated DNA technologies). The sid4 open
reading frame was amplified using an oligonucleotide 64 bp upstream of the start site (CGAGCATGTGACTTACACTC) and a
second oligonucleotide 94 bp downstream of the stop codon (ACGCCTCTTTCATTCAGTCAG) (Integrated DNA
technologies). The PCR products were each sequenced using Oxford Nanopore Technology with custom analysis and
annotation (Plasmidsaurus).

Microscopy and image analysis

Strains for fixed-cell and live-cell imaging experiments were grown at 25°C in YE and then shifted to 36°C for 4 hours. Cells
were fixed with 70% ethanol for DAPI and methyl blue (MB) staining as described previously (Roberts-Galbraith et al., 2009).
Images were acquired using a Zeiss Axio Observer inverted epifluorescence microscope with Zeiss 63× oil objective (1.46
NA) and captured using Zeiss ZEN 3.0 (Blue edition) software. For fixed-cells, a singular medial Z slice was obtained. For
live-cells, images were acquired with a z-stack step size of 0.50 µm and a total of 10 z-slices. All images were further
processed using ImageJ (Schindelin et al., 2012). Live-cell representative images were deconvolved and projected with
average intensity. Images used for all imaging experiments were repeated twice.

AlphaFold3 structural prediction

Protein structure predictions were generated with the AlphaFold3 server (Abramson et al., 2024) and visualized using the
PyMOL molecular graphics system (version 3.0, Schrodinger, LLC).

Reagents

The strains used in this study and their genotypes are listed below.

Strain Genotype Source

KGY101 cdc11-136 h- Nurse et al., 1976

KGY69-2 cdc11-A7 ura4-D18 h+ This study

KGY103 cdc11-123 h- Nurse et al., 1976

KGY107 cdc11-119 h- Nurse et al., 1976
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KGY113-2 cdc11-B1 ura4-D18 h- This study

KGY246 ade6-M210 ura4-D18 leu1-32 h- This study

KGY281-2 cdc11-B7 ura4-D18 h- This study

KGY639-2
cdc11-GFP:KanMX6 sad1-mCherry:NatMX6 ade6-M210 leu1-32 ura4-D18
h- This study

KGY718-2 cdc11-B3-GFP:KanMX6 sad1-mCherry:NatMX6 ura4-D18 h+ This study

KGY841-2 cdc11-A7-GFP:KanMX6 sad1-mCherry:NatMX6 ura4-D18 h- This study

KGY825-2 cdc11-B1-GFP:KanMX6 sad1-mCherry:NatMX6 ura4-D18 h+ This study

KGY1033 cdc11-A7 ura1 leu1-32 mam2::LEU2 ade6-M216 h90 Balasubramanian et al.,
1998

KGY1034 cdc11-B1 ura1 leu1-32 mam2::LEU2 ade6-M216 h90 Balasubramanian et al.,
1998

KGY1036 cdc11-B3 ura1 leu1-32 mam2::LEU2 ade6-M216 h90 Balasubramanian et al.,
1998

KGY1039 cdc11-B7 ura1 leu1-32 mam2::LEU2 ade6-M216 h90 Balasubramanian et al.,
1998

KGY1234 sid4-SA1 ura4-D18 leu1-32 ade6-M210 h- Lab stock

KGY1742-2 cdc11-B7-GFP:KanMX6 sad1-mCherry:NatMX6 ura4-D18 h- This study

KGY2746 sid4-459 leu1-32 ura4-D18 his3-D1 h- Balasubramanian et al.,
1998

KGY10010-
2 cdc11-B3 ura4-D18 h+ This study
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