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Abstract

Eukaryotic translation initiation factor 2 (eIF2) is among the best-studied of the translation initiation factors, but early
preparations from wheat germ consistently showed a co-purifying protein of ~61kDa. As this protein was never identified,
we revisited the question of its identity using mass spectrometry on an archived Coomassie-stained and dried gel of elF2
purified in 1991. The co-purifying protein, aspartyl-tRNA synthetase, is notable for serving as a receptor for the R
enantiomer of B-aminobutyric acid, with links to stress-induced elF2a phosphorylation, highlighting the potential for
stable “super complexes” connecting translation initiation with stress responses.
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Figure 1. Identification of co-purifying protein with wheat germ elF2:

A. Dried SDS PAGE gel used to identify the mystery protein. Lanes 1-11 represent fractions from a phosphocellulose
column eluted with a 250-500mM KCI gradient as described (Lax, et al., 1986). M are marker lanes as indicated, and C is
a control of a previous elF2 preparation. B. Relative abundance by number of peptide spectral matches (PSMs) of the 106
proteins identified in the “?” band. C. Table of the six most abundant proteins identified. Because wheat is hexaploid,
these six entries represent highly related gene products. Headers indicate Uniprot accessions and descriptions, total and
unique peptides identified, and total peptide spectral matches per protein. D. Remaining questions about the association of
Asp-tRNA synthetase with the eIF2 complex and a hypothetical model for its potential role in the regulation of
elF2/translation initiation by BABA.
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elF2 is among the most studied of the translation initiation factors, first purified from rabbit reticulocytes (Merrick et al.,
1975) and subsequently from wheat germ (Benne et al., 1980, Clarke et al., 1987, Spremulli et al., 1979). However, in
these early preparations of wheat germ elF2, a protein of ~61kDa was often obtained along with the expected 3 subunits
of elF2, a, B and y (Benne, et al., 1980, Clarke, et al., 1987, Spremulli, et al., 1979). Further purification methods
indicated that the contaminant could be removed using tight salt gradients on ion-exchange resins to remove the
contaminant and retain the expected 3 subunits (Treadwell et al., 1979, Walthall et al., 1979). However, the co-purification
of this ~61 kDa protein through ammonium sulfate precipitation, anionic and cationic exchange suggests that it is tightly
associated with the complex and potentially has some function with eIF2. The recent work by McWhite et al (2020)
explored the deep conservation of protein complexes in plants including a conserved tRNA-multi-synthetase complex
(McWhite et al., 2020). This work renewed an interest by one of the authors (KSB) in determining what the contaminant
might be in relation to the role of eIF2 in initiation of translation. A Coomassie-stained and dried gel of eIF2 purified in
1991 (shown in Figure 1A) was used to identify the mystery protein.

As shown in Figure 1B-C, mass spectrometry revealed the expected 3 subunits of elF2q, 3, y and the mystery contaminant
to be aspartyl-tRNA synthetase (AspRS). Interestingly, in Arabidopsis aspartyl-tRNA synthetase (IBI1, AT4G31180)
functions as a receptor for enantiomer specific R-BABA (B-aminobutyric acid) (Schwarzenbacher et al., 2014). R-BABA
primes the plant immune system to respond to various pathogens leading to accumulation of aspartic acid and results in
phosphorylation of e[F2a by GCN2 due to increased amounts of uncharged tRNA (Luna et al., 2014). However, although
phosphorylation by GCN2 regulates reduced growth regulation by BABA, it does not appear to affect the immune
response suggesting that there are at least two pathways of regulation by BABA (Luna, et al., 2014). Further studies have
shown that IBI1 interacts with VOZ1 and VOZ2 transcription factors and has a role in abscisic acid (ABA) signaling in
pathogen response (Schwarzenbacher et al., 2020). A rice thermo-sensitive mutant (ylc3) with reduced levels of
chlorophyll, altered chloroplasts and increased aspartate, asparagine and glutamine levels was identified as aspartyl-tRNA
synthetase. This mutant was also shown to have increased levels of elF-2a phosphorylation due to the increase of
uncharged aspartyl-tRNA (Liu et al., 2022).

The identification of aspartyl-tRNA synthetase that co-purifies with eIF2 and functions as a receptor for a signaling
molecule suggests that in the cell there is an intimate relationship with the regulation of translation in response to
pathogens and other biotic and abiotic stresses. Although the first part of this mystery is solved, it now has opened up
many more questions about how “super complexes” are formed and regulated within cells. As shown in Figure 1D, it is
unknown at this time whether the aspartyl-tRNA synthetase has a dual role both as a receptor to sense the presence of R-
BABA and to regulate the activity of eIlF2 though phosphorylation by GCN2. It is also unknown if aspartyl tRNA
synthetase bound to eIF2 functions as a synthetase or is also present in the tRNA-multi-synthetase complex. It remains to
be determined whether there are multiple separate functions of aspartyl-tRINA synthetase and if there are further relevant
interactions of these complexes within the cell yet to be discovered.

Methods

Sample processing. Wheat germ elF2 was purified as described and resolved by SDS PAGE (Lax et al., 1986). Starting
with a dried Coomassie stained gel from 1991, the two lanes (See Fig. 1A) were cut and soaked as follows based on the
method of Murphy et al (Murphy et al., 2018) to rehydrate and release the gel from the paper backing. The gel segment
was soaked sequentially in 30% methanol/5% acetic acid/5% glycerol, 5% glycerol/1% acetic acid, 1% glycerol/1% acetic
acid, and finally dH50, to allow removal of paper backing. Each band of interest was then excised, diced, and transferred
to a low protein binding Eppendorf tube to be processed using a standard in-gel trypsin digest method (Goodman et al.,
2018). Trypsin-digested peptides were extracted from the gel, centrifuged 14,000 x g 10 min to remove residual gel pieces
and paper fibers, then desalted using Thermo Scientific Hypersep Spin Tip C-18 (60109-412), dried, and resuspended in
5% acetonitrile/0.1% formic acid for LC-MS-MS.

Mass Spectrometry. Spectra were collected on a Thermo Orbitrap Fusion Lumos Tribrid Mass Spectrometer with a trap
to column configuration (Thermo Scientific Acclaim PepMap 100 # 64535, EASY-Spray C18 Reversed Phase HPLC
Column #ES902) using a data-dependent 75 minute top speed collection method with a 60 minute 3-40% acetonitrile
gradient, dynamic exclusion after one observation for 15 seconds, and stepped HCD (27/30/33). RAW files were
individually processed in Proteome Discoverer 2.5 using the PWF Tribrid_Basic_fixed_valuePSM_SequestHT workflow
with the following settings: trypsin digestion with up to 2 missed cleavages, static carbamidomethyl modification of
cysteine, and dynamic modifications of oxidized methionine, and protein N-termini as Met-loss, acetylation, or Met-loss +
acetylation. Spectra were searched against the Uniprot Triticum aestivum fasta (UP000019116_4565) and a standard
contaminants file. Resulting msf files from all samples were reprocessed to create a single output table using the
CWF_Basic_pdConsensusWF workflow with a 1% peptide level and 1% protein level FDR and strict parsimony for
protein grouping. Data are available from the MassIVE data repository under accession #MSV000097532.

Acknowledgements: In Memoriam to Lisa W. Benkowski (purified the elF2 used in this report as a graduate student in
1991), Sandra R. Lax (developed the purification method for wheat germ eIF2) and Joanne M. Ravel (in whose laboratory
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