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Role of AdamTS-B in Drosophila wing vein formation
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Abstract

The development of Drosophila wing veins is a complex morphogenetic process that depends on the interplay of different
signaling pathways, including EGFR, BMP, Notch, Hedgehog and Wnt. Basement membranes (BMs) and proteases that
process BM components play a crucial role in controlling the morphogen spreading and associated patterning required for
proper organ formation. Here we show, that AdamTS-B is required for the proper development of Drosophila wing veins.
Knockdown of AdamTS-B results in various phenotypes, including additional veins, delta branches, and wandering veins
within different longitudinal veins, though there are no differences in the cross veins.
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Figure 1. AdamTS-B is required for proper vein formation in the wing of D. melanogaster.:

(A-D') Wings (A, B, C, D) and close-up of each vein region (A', B', C', D') are shown for the genotypes will8 (A, A'") and
nub-Gal4/w'18 (B, B') as controls, nub-Gal4/UAS-AdamTS-BRNAL (BDSC_44522) (C, C') and nub-Gal4/UAS-AdamTS-BRNAI
(VDRC_109025) (D, D'). (E) Schematic of a wing showing the observed phenotypes. (F-K) Quantification of the observed
phenotypes in each genotype for the veins L2 (F), L3 (G), L4 (H), L5 (I), ACV (J) and PCV (K). The significance was tested

in comparison with the will8 (black asterisks) and nub-Gal4/wl18 (blue asterisks) controls. Significances were estimated
using Chi-square test. Significance levels: * = p < 0.05, ** = p < 0.01, *** = p <0.001. n = 23 (uw), 33 (nub—Gal4/w1118),
35 (nub-Gal4/UAS-AdamTS-BRNAT (BDSC_44522)), 32 (nub-Gal4/UAS-AdamTS-BRNAT (VDRC_109025)).

Description

The BM is a thin extracellular matrix that underlies epithelia and surrounds most tissues and organs, thereby mediating
biophysical and biochemical cues for cells required for morphogenesis (Khalilgharibi & Mao, 2021; Sherwood, 2021; Topfer,
2023). Those biochemical cues are mainly regulated by the ability of the BM to bind morphogens that are required for
patterning (Patel et al., 2008; Wang et al., 2008). The remodeling of the BM by protease cleavage and subsequent degradation
of the BM components is consequently an important step in the limitation of morphogens, patterning and morphogenesis. The
Drosophila wing disc is composed of two opposing epithelial layers, which share a common BM that surrounds the organ. The
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formation of the Drosophila wing veins depends on the strict control of BMP morphogen distribution as well as the
antagonism of Notch and EGF signaling, Hedgehog and Wnt pathways (Blair, 2007). The precise regulation of these
patterning leads to a fully developed wing with five longitudinal veins (L1-L5) and two cross veins (anterior (ACV) and
posterior (PCV)) (Fig. 1A). The AdamTS gene group is known to cleave extracellular matrix components and be important for
cell migration and organ sculpting (Agarwal et al., 2022; Gonsior & Ismat, 2019; Ismat et al., 2013; Lhamo & Ismat, 2015;
Skeath et al., 2017; Topfer et al., 2024). AdamTS-B is one of four genes in Drosophila encoding a ‘A disintegrin and
metalloprotease with thrombospondin motif' and an ortholog of human AdamTS-7 and AdamTS12 (Oztiirk-Colak et al., 2024).
Knockdown of AdamTS-B has been shown to result in wing vein formation phenotypes. Butchar et al. 2012 identified
AdamTS-B as a downstream gene of EGFR signaling and a knockdown with a ubiquitous Gal4 driver (Act5C-Gal4) led to an
extra vein in L2. Based on this, Pham et al 2018 dissected the wing phenotypes of AdamTS-B using different driver lines and
different UAS-dsRNA lines. In this study, we replicated an experiment form Butchar et al. 2012. and Pham et al. 2018 by
knocking down AdamTS-B, but with other genetic and environmental conditions.

For tissue-specific knockdown, we used nubbin-Gal4 (nub-Gal4), which is active in the developing pouch region, the cells

that give rise to the adult wing (Azpiazu & Morata, 2000). We analyzed the morphology of wings from w18 (Fig.1A and A")
and nub-Gal4/+ (Fig.1B and B'") control flies as well as two different UAS-dsRNA lines for AdamTS-B knockdown, nub-

Gal4/UAS-AdamTS-BRNAT (BDSC 44522) (Fig.1C and C') and nub-Gal4/UAS-AdamTS-BRVA! (VDRC 109025) (Fig.1D and
D"). First, we quantified the presence of extra veins in L2 (Fig.1A-F). Knockdown of AdamTS-B with the BDSC_44522 (from
here on BDSC line) and the VDRC_109025 (from here on VDRC line), which showed full penetrance of the phenotype,

resulted in significant differences to w18 a5 well as to nub-Gal4/+ controls (Fig.1F). In contrast to L2, in the L3-L5 regions,
in addition to the extra vein phenotypes, we also observed the presence of delta branches and so-called wandering veins
(illustrated in Fig.1E, Fig.1A-D' and G-I). In the L3 region, we observed the presence of all three phenotypes (extra vein, delta
branch and wandering vein) with significant differences between the AdamTS-B knockdown with the VDRC line compared to
both controls, while we found no differences for the BDSC line (Fig.1G). In L4, we found significant differences between the
two controls with wandering veins and delta branches in nub-Gal4/+ controls (Fig.1H), as well as a significant difference

between w18 and the BDSC knockdown line. AdamTS-B knockdown with the VDRC line resulted in fully penetrance with
all three possible phenotypes and significant differences compared to both controls (Fig.1H). In the last region for longitudinal
veins, L5, both knockdown lines show significant differences compared to both controls, but only delta branches and
wandering veins and no extra veins (Fig.1I). Finally, in the region of ACV and PCV, we found no differences in terms of the
phenotypes just described and also presence of gaps, which are present in low penetrance in all genotypes in the AVC (Fig.1J).

In summary we can draw four conclusions. First, our results are consistent with the finding of Butchar et al. 2012 and Pham et
al.2018, that knockdown of AdamTS-B can lead to extra veins in L2 (Fig.1F). Notably, while Pham et al. 2018 described extra
veins in L2 with the MS1069-Gal4 driver, they found a decreased percentage of extra veins in L2 with AdamTS-B knockdown
using nub-Gal4, which is in contrast to our results. Second, in L3 and L4 the VDRC line shows various phenotypes, namely
extra veins, delta branches and wandering veins, that are not significantly different between the nub-Gal4 control and the
BDSC line (Fig.1G and H). These observations have not been described previously. Third, in L5 we observe delta branches
and wandering veins in both AdamTS-B knockdown conditions (Fig.11). Wandering veins in L5 were also described in Pham et
al. 2018. Fourth, the cross veins are not affected by AdamTS-B knockdown. To conclude, while our results mainly support the
findings of Butchar et al. 2012 and Pham et al. 2018, on the one hand we show a result that is in contrast to Pham et al. 2018,
specifically the knockdown of AdamTS-B led in our results to an increase of extra veins in L2 and in Pham et al. 2018 to a
decrease. On the other hand, we also found a much higher penetrance of phenotypes in every longitudinal vein, at least with
the VDRC line. One reason might be the difference regarding culturing conditions. In contrast to Pham et al. 2018, we kept
our crosses at 29 °C, which might increase RNAI efficiency. In line with Pham et al. 2018 we observed differences regarding
the different UAS lines. The VDRC line shows an overall much higher penetrance of phenotypes than the BDSC line.
However, it is unclear whether the higher penetrance of the phenotypes in the VDRC line is due to a possible higher
knockdown efficiency of this line or whether this line shows off-target effects in contrast to the BDSC.

AdamTS-B was identified as a target gene of EGFR pathway using microarray experiments, where ectopic activation of EGFR
results in increased AdamTS-B expression (Butchar et al., 2012). The fact that reduction of AdamTS-B through RNAIi led to
the presence of extra veins (Butchar et al., 2012; Pham et al., 2018) and ectopic expression of AdamTS-B to the loss of veins
(Pham et al., 2018) are reminiscent to the modulation of the EGFR signaling pathway (Brentrup et al., 2000; Sturtevant et al.,
1993; Sturtevant & Bier, 1995). In addition, a genetic interaction analysis in which AdamTS-B knockdown phenotypes were
attempted to be rescued revealed that genetic reduction of the EGFR ligands kern in combination with either vein or spitz
reduces the proportion of wings with extra veins, suggesting a direct or indirect involvement of AdamTS-B in EGFR signaling
at the ligand level (Butchar et al., 2012). Our results support the idea that AdamTS-B negatively regulates EGFR pathways,
hence in our condition AdamTS-B knockdown shows stronger phenotypes in all longitudinal veins, which is evident since
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EGFR affects all longitudinal veins (Fig.1A-I). The exact mechanism by which AdamTS-B modulates the EGFR pathway and
longitudinal vein formation is unknown. We propose a model in which AdamTS-B influences activation of EGFR signaling,
controlling the morphogenesis of all five longitudinal veins, by remodeling the BM during larval stages when cell fate is
determined by morphogen gradients (De Celis, 1998) and before the BM is degraded during wing growth and elongation
(Diaz-de-la-Loza et al., 2018).

Methods
Drosophila genetics and husbandry

The fly stocks used were nub-Gal4 [Bloomington Drosophila Stock Center (BDSC), BDSC_25754], w18 (BDSC_3605),

UAS-AdamTS-BIRNA (BDSC_44522) and UAS- UAS-AdamTS-BYRNA [Vienna Drosophila Resource Center (VDRC),
VDRC_109025]. Flies were kept at 25°C on standard food. Crosses were raised at 29°C.

Wing dissection

Flies were stunned with CO5 and the desired female flies were transferred to a block dish containing isopropanol. The wings
were dissected from the body using forceps. The wings were transferred to tubes containing isopropanol using a cut pipette tip
and stored until mounting in a mixture of isopropanol and Euparal (ratio 1:1).

Wing quantification

The pictures were taken using the bright field of the Observer.Z1 (air objective: 5x). For wings, that can't be captured with one
photograph, two pictures were made and afterwards stitched together using ImageJ (Preibisch et al., 2009). Each wing was
analysed for all veins.

Statistical analysis

To evaluate significances Chi-square testin R was used (R Core Team, 2021).

Reagents
g:::fnls’ hila Genotype Identifier Available from
P{w[+mC]=UAS-Dcr-2.D}1, w[1118]; Bloomington Drosophila
nub-Gal4 P{w[+mW.hs]=GawB}nubbin-AC-62 BDSC_25754 |51 0ck Center
Wilis Wll8 BDSC_3605 Bloomington Drosophila
- Stock Center
UAS- y[1] sc[*] v[1] sev[21]; P{y[+t7.7] BDSC 44522 Bloomington Drosophila
AdamTSUsRNA | v[+¢1.8]=TRiP.HMC02914 }attP2 - Stock Center
UAS- Vienna Drosophila
AdamTSIRNA P{KK114135}VIE-260B VDRC_109025 Resource Center
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