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Abstract

Meiotic crossover recombination is essential for accurate chromosome segregation and the creation of new allele
combinations that drive natural selection during evolution. Thus, the number and distribution of crossovers is exquisitely
controlled. We have shown that the pachytene checkpoint component and conserved AAA-ATPase PCH-2 controls
crossover number and distribution during oogenesis in C. elegans. To test if PCH-2 has similar effects during
spermatogenesis, we monitored recombination across a single chromosome in control and pch-2 mutant males. Our results
demonstrate that PCH-2's effect on crossover distribution during spermatogenesis is different than we observed in
oogenesis, exhibiting sexual dimorphism.
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Figure 1. PCH-2 localizes to meiotic chromosomes and controls the distribution of cressovers in the male germline:

A. Cartoon of the male germline, labeled with stages of spermatogenesis. B. Image of male germline stained for PCH-2
(green and grayscale) and DNA (DAPI, magenta). Scale bar indicates 25 microns. C. Physical and genetic maps of
Chromosome I are depicted to scale. D. Histogram showing genetic distances across Chromosome I during oogenesis in
control animals and pch-2 mutants. Data is from Patel et al., 2025. Genetic distance is shown in centimorgans (cM). E.
Histogram showing genetic distance of the same four intervals during spermatogenesis in control animals and pch-2
mutants. A * indicates a p-value < 0.05 and a ** indicates a p value < 0.01.

Description

Meiosis is the specialized cell division that produces haploid gametes, such as sperm and eggs, for sexual reproduction.
Despite sharing critical mechanistic similarities, meiosis also displays sexual dimorphism, where details like timing during
development, duration of the cell division, length of meiotic chromosome axes, number and distribution of crossovers, and
stringency of checkpoint activity varies between spermatogenesis (the production of sperm) and oogenesis (the production
of eggs) (Cahoon and Libuda, 2019). Some of these dimorphisms can be observed in C. elegans, where meiotic prophase
occurs 2.5-3 times faster in spermatogenesis than oogenesis (Jaramillo-Lambert et al., 2007) and male germlines do not
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exhibit germline apoptosis, either to maintain homeostasis (physiological apoptosis) (Gumienny et al., 1999) or in
response to checkpoint activation (Jaramillo-Lambert et al., 2010).

A major goal of meiotic prophase is to establish a physical linkage between homologous chromosomes through the
coordinated events of homolog pairing, synapsis and meiotic crossover recombination. This linkage, or chiasma, enables
the accurate segregation of homologous chromosomes during meiosis I and introduces the genetic diversity that drives
natural selection and evolution. Because of its importance, meiotic recombination is subject to striking levels of regulation
to control crossover number and distribution, from its start (double strand break formation) to its end (crossover
designation and resolution) (Gray and Cohen, 2016).

The regulation of meiotic recombination also shows sexual dimorphism (Cahoon and Libuda, 2019). In C. elegans,
crossover recombination progresses faster during spermatogenesis than oogenesis (Cahoon et al., 2023a; Woglar and
Villeneuve, 2018), reflecting either the acceleration of meiotic prophase or actual mechanistic differences. Whatever the
reason, the observed differences in the progression of meiotic recombination also correlates with changes in crossover
number, since double crossovers are observed both genetically and cytologically during spermatogenesis (Cahoon et al.,
2023b; Gabdank and Fire, 2014; Lim et al., 2008). In oogenesis, we readily detect double crossovers genetically but not
cytologically (Deshong et al., 2014; Patel et al., 2025).

We have shown that the conserved AAA-ATPase and pachytene checkpoint component, PCH-2, controls the number and
distribution of crossovers by inhibiting their formation throughout meiotic prophase during oogenesis in C. elegans
(Deshong et al., 2014; Patel et al., 2025; Russo et al., 2023). Counterintuitively, this antagonism during oogenesis
produces fewer crossovers in pch-2 hermaphrodites (Deshong et al., 2014; Patel et al., 2025; Russo et al., 2023).
Moreover, the remaining crossovers shift to the chromosome ends that undergo initial homolog pairing and synapsis and
away from the gene-rich, central parts of the chromosome (Patel et al., 2025), potentially reflecting early homolog
interactions and/or where double strand breaks happen in early prophase.

We favored this first hypothesis, that recombination shifted to sites of early homolog interactions in pch-2 mutants. To test
this hypothesis, we exploited the observations that pairing and synapsis are controlled by the same mechanisms during
both oogenesis and spermatogenesis (Jaramillo-Lambert et al., 2010) but meiotic recombination displays sexual
dimorphism (Cahoon et al., 2023a). We analyzed recombination in control and pch-2 mutant males to determine what
effect mutation of pch-2 had on the distribution of crossovers during spermatogenesis. We found that changes in crossover
distribution during spermatogenesis in pch-2 mutants are not the same as observed in oogenesis, indicating that PCH-2's
effect on crossover number and distribution is sexually dimorphic. Moreover, the changes in crossover distribution we
observe between oogenesis and spermatogenesis in pch-2 mutants reflect mechanistic differences in the progression of
meiotic prophase rather than evidence about early homolog interactions.

Before performing recombination analysis, we wanted to verify whether PCH-2 localized to meiotic chromosomes during
spermatogenesis similar to what we have reported in hermaphrodites during oogenesis (Deshong et al., 2014). The male
germline, like the hermaphrodite germline, is arranged in a spatio-temporal gradient: nuclei at the distal tip divide
mitotically until they differentiate to go through pre-meiotic S phase. Entry into meiotic prophase is characterized by
transition zone nuclei, corresponding to leptotene/zygotene, where chromosomes adopt a polarized morphology and
undergo pairing and synapsis (Figure 1A). Fully synapsed chromosomes redisperse in pachytene, where the process of
crossover recombination occur until crossovers are designated and cytologically marked in late pachytene (Figure 1A).
Instead of diplotene/diakinesis, meiotic nuclei undergoing spermatogenesis condense before entering meiosis I and II
(Figure 1A). PCH-2 forms foci in pre-meiotic S phase and the transition zone and localizes to meiotic chromosomes in
pachytene (Figure 1B). PCH-2 persists on meiotic chromosomes until late pachytene, when it is removed where
crossovers are cytologically marked. Thus, PCH-2's localization to meiotic chromosomes is similar to what we observe in
oogenesis in hermaphrodites.

To analyze recombination, we used wildtype Hawaiian CB4856 strain (HI) and Bristol N2 strains to assay recombination
between single nucleotide polymorphisms (SNPs) that added or removed a restriction enzyme site (SNIP-SNP). We
identified 5 SNPs that spanned 95% of Chromosome I (Figure 1C) and generated either control or pch-2 mutant males that
were heterozygous for N2 and Hawaiian SNPs (F1 animals). These heterozygous males were crossed to Hawaiian
hermaphrodites that were wildtype or mutant for the pch-2 gene and the F2 progeny were analyzed to monitor
recombination in the heterozygous father.

In control males, we observed 7.6% double crossovers (DCOs in Figures 1D and 1E) on Chromosome I during
spermatogenesis (Figure 1E), similar to what we had observed during oogenesis in control hermaphrodites (Figure 1D and
Patel et al., 2025). However, in contrast to what we observed on Chromosome I during oogenesis, 100% (7/7) of these
double crossovers had one crossover that was at the end of the chromosome where pairing and synapsis initiate, also
called the Pairing Center (PC) (Figure 1E) (MacQueen et al., 2005). Further, we saw an increase in recombination in the
genetic interval at the non-PC end (Figure 1E), compared to what we observed during oogenesis (Figure 1D).
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When we monitored recombination in pch-2 mutant males, we observed a decrease in the frequency of double crossovers
(3.3%) (Figure 1E) but not the significant decrease we observed during oogenesis (Figure 1D), consistent with the
increase in cytological double crossovers during spermatogenesis. Moreover, 33% of double crossovers included one
crossover at the PC end in pch-2 mutant males, in contrast to the 100% we observed in control males (Figure 1E). While
not a significant result, this suggests that mutation of pch-2 does have subtle consequences for crossover formation at PCs.
Finally, the most dramatic shift in recombination we could detect in pch-2 mutant males was a significant reduction in
recombination at the PC end and an increase in a more central, gene-rich, genetic interval (Figure 1E), the opposite of the
phenotype we observed during oogenesis in pch-2 mutants (Patel et al., 2025).

Since homolog pairing and synapsis also rely on Pairing Centers in males (Jaramillo-Lambert et al., 2010), these results do
not support our hypothesis that PCH-2 specifically inhibits crossovers at regions of the chromosome that are likely to
undergo early homolog interactions where pairing and synapsis initiate during oogenesis or spermatogenesis. Instead,
these changes in crossover distribution in pch-2 mutants likely reflect where double strand breaks happen early in meiotic
prophase (Patel et al., 2025). These data also suggest that other factors, including the timing of meiotic prophase
(Jaramillo-Lambert et al., 2007), the acceleration of meiotic recombination (Cahoon et al., 2023a), the absence of
germline apoptosis (Gumienny et al., 1999) and/or the presence of the unpaired, unsynapsed X chromosome in the male
germline that undergoes meiotic silencing (Maine, 2010), contribute to how PCH-2 controls the distribution of crossovers
during spermatogenesis. Since we see variations in how PCH-2 controls crossover distribution between spermatogenesis
and oogenesis, even in the same model system, these results also reinforce that the changes in crossover number and
distribution observed in pch-2 mutants across model systems likely reflect mechanistic differences that ensure proper
regulation of crossover number and distribution that have been selected for in those systems (Bhalla, 2023).

Methods
C. elegans strains and genetics:

The Bristol N2 C. elegans strain (Brenner, 1974) was used as the wild-type control for all experiments. Strains were
maintained on Nematode Growth Media seeded with OP50 bacteria and grown at 20°C under standard conditions for all
experiments. The mutations and transgenes used in our experiments were:

LG II: pch-2(tm1458)
LG V: bcls39 (Plin-15::ced-1::GFP)
DAPI staining and Immunofluorescence:

Adult males were fixed and stained 24-26 hours post L4 larval stage, similar to (Russo et al., 2023). For analyzing PCH-2
localization, rabbit anti-PCH-2 primary antibodies (Deshong et al., 2014) were used at 1:250 dilution and Alexa488 anti
rabbit (Invitrogen) secondary antibodies were used at a 1:500 dilution.

Images of immunostaining experiments were obtained using a DeltaVision Personal DV system (Applied Precision)
equipped with a 100x N.A. 1.40 oil-immersion objective (Olympus), resulting in an effective XY pixel spacing of 0.064
microns/pixel. Z-stacks were collected at 0.2-pm Z-spacing and processed by constrained, iterative deconvolution.
Imaging, and image scaling were performed using functions in the softWoRx software package. Projections were
generated using a maximum intensity algorithm and pseudo colored in Adobe Photoshop.

Genetic analysis of Recombination

The wildtype Hawaiian CB4856 strain (HI) and the Bristol N2 strain were used to assay recombination between single
nucleotide polymorphisms (SNPs) on Chromosome I (Bazan and Hillers, 2011; Wicks et al., 2001). The SNPs, primers,
enzymes used for restriction digests and expected fragment sizes are included in the chart below.

To measure wild-type recombination, N2 males containing bcIs39 were crossed to Hawaiian CB4856 worms. Cross-
progeny males were identified and contained one N2 and one CB4856 chromosome. These were assayed for
recombination by crossing with CB4856 hermaphrodites. Cross-progeny hermaphrodites containing bcIs39 from the
resulting cross were isolated as L4s, and then cultured individually in 96-well plates in liquid S-media complete
supplemented with HB101. Four days after initial culturing, starved populations were lysed and used for PCR and
restriction digest to detect N2 and CB4856 SNP alleles.

For recombination in pch-2 mutants, strains homozygous for the CB4856 background of the relevant SNPs were created
by backcrossing pch-2 mutants to worms of the CB4856 background at least eight times and verifying the presence of
Hawaiian SNPs on all chromosomes tested in the recombination assay. These Hawaiianized pch-2 mutants were then
mated with pch-2; bcIs39. Subsequent steps were performed as in the wildtype worms.
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Primer Primer
SNP Primer ane.r . Sequence Sequence Restriction N2 Hr
Name |GeneticLocation enzyme -
FOR REV
A |Fsecit |-19 ATGCCAGTGATAAGGAAC |TCACATCCCTTGTCGATG Dral 354, 500
GG AA 146
GACAATGACCAATAAGAC |GATCCGTGAAATTGTTCC 440 364,
IB [Y71G12|-12.3 Bsrl 71125,
G G 125
76
ATCATTCTCCAGGCCACG |CTGAACTAGTCGAACAAA 300,
IC |KO04F10 (0.9 TTAC CCCC Ndel 594 294
207,
D |To7D10 136 CTTGGTGTGGGGAGAGTA |TTTGTCCGGATTGACTCT Sau3Al 303, 9,
TAGG GC 63 63
CACAAGTGGTTTGGAAGT |CAACAAAGGGATAGATCA |, .. 236,
IE [ZK909 |28.8 ACCG CGGG HindIII 450 214

Figures and Statistics:

The figure was assembled using Adobe Illustrator. All histograms were generated using Prism Graphpad. Fischer's exact
test was used to quantify significance.
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